Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters

Database
Language
Document Type
Year range
1.
BMC Microbiol ; 23(1): 110, 2023 04 20.
Article in English | MEDLINE | ID: covidwho-2321753

ABSTRACT

BACKGROUND: The production of biopolymers from waste resources is a growing trend, especially in high-population countries like Egypt. Beta-glucan (ß-glucan) belongs to natural polysaccharides that are derived from plant and microbial origins. In this study, following increasing demands for ß-glucan owing to its bioactive properties, a statistical model to enhance microbial ß-glucan production was evaluated for its usefulness to the food and pharmaceutical industries. In addition, a trial to convert ß-glucan polymer to nanostructure form was done to increase its bioactivity. RESULTS: Ingredients of low-cost media based on agro-industrial wastes were described using Plackett-Burman and central composite design of response surface methodology for optimizing yeast ß-glucan. Minerals and vitamin concentrations significantly influenced ß-glucan yield for Kluyveromyces lactis and nitrogen and phosphate sources for Meyerozyma guilliermondii. The maximum predicted yields of ß-glucan recovered from K. lactis and M. guilliermondii after optimizing the medium ingredients were 407 and 1188 mg/100 ml; respectively. For the first time, yeast ß-glucan nanoparticles (ßGN) were synthesized from the ß-glucan polymer using N-dimethylformamide as a stabilizer and characterized using UV-vis spectroscopy, transmission electron microscope (TEM), dynamic light scattering (DLS) and Fourier transform infrared spectroscopy (FT-IR). The average size of ßGN was about 300 nm as determined by DLS. The quantitative variation of functional groups between ß-glucan polymer and ßGN was evaluated by FT-IR for explaining the difference in their biological activity against Normal Homo sapiens-Hela contaminant and Hepatic cancer cell lines. CONCLUSIONS: Enriching the low-cost media based on agro-industrial wastes with nutritional ingredients improves the yield of yeast ß-glucan. The present study succeeds to form ß-glucan nanoparticles by a simple method.


Subject(s)
Nanoparticles , beta-Glucans , Humans , beta-Glucans/chemistry , beta-Glucans/metabolism , Spectroscopy, Fourier Transform Infrared , Industrial Waste , Nanoparticles/chemistry , Nanotechnology
SELECTION OF CITATIONS
SEARCH DETAIL